HIGH PRESSURE BLOWER
Direct Drive & Belt Driven
Model HPB
Aerovent's High Pressure Blowers feature high static pressure capabilities from 11" to 69" and air volume to 6500 CFM. High Pressure Blowers are durable, compact and versatile fans used in applications such as:

- Agitation and aeration
- Product cooling and drying
- Conveying
- Supplying combustion air to furnaces and ovens
- Exhausting
- Transporting solid materials
- Gas boosting and compressing

High Pressure Blowers are used in applications such as:

- Agitation and aeration
- Product cooling and drying
- Conveying
- Supplying combustion air to furnaces and ovens
- Exhausting
- Transporting solid materials
- Gas boosting and compressing

Aerovent commonly utilizes Model HPB High Pressure Blowers in landfill ventilation applications to extract methane gas. Methane emitted from decomposed waste in landfill sites can contaminate the surrounding property, through migration, if not properly contained. Frequently, a gas collection system collects the methane generated by the waste and uses it to produce electricity for onsite equipment operation or for resale to local utilities. Recovered methane gas provides a clean source of fuel, improves air quality, and reduces greenhouse gas emissions.

To extract methane gas from the landfill, perforated pipes (average 4" diameter) are sunk vertically down into the landfill and back filled with gravel. The pipes are manifolded together at the surface, and connected to the high pressure blower. Gas flows through the pressure blower and then to a flare stack where it is burned off.

### Landfill Ventilation

High Pressure Blowers can also be utilized to convey material for industrial processes. An example would be polystyrene, or “Styro-foam,” for the manufacture of plastic grocery bags. Styrofoam is difficult to transport by hand because it is light and bulky. A high pressure blower is utilized to pneumatically convey this material from storage containers to the extrusion process for melting, molding and cooling. The polystyrene material is then melted on an extruder ring and air is blown through the ring to form a plastic tube. In many cases a separate high pressure blower is utilized to blow air through the ring. After the tube is formed, one end is heat sealed to complete the forming of the plastic bag.

### Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Design Features</td>
<td>3</td>
</tr>
<tr>
<td>Drive Arrangements</td>
<td>3</td>
</tr>
<tr>
<td>Accessories</td>
<td>4</td>
</tr>
<tr>
<td>How To Select A Pressure Blower</td>
<td>6</td>
</tr>
<tr>
<td>Performance Data</td>
<td>7</td>
</tr>
<tr>
<td>Material Specifications For Standard Units</td>
<td>20</td>
</tr>
<tr>
<td>Dimensional Data</td>
<td>21</td>
</tr>
<tr>
<td>Typical Specifications</td>
<td>25</td>
</tr>
</tbody>
</table>

Aerovent Bulletin 912
Design Features

Construction
A continuously-welded heavy-gauge steel housing and motor base provide for rugged, heavy-duty service. Rotatable and reversible housings are offered as a standard for all sizes.

An inlet venturi with a guard is standard for all units. A flanged or pipe inlet is available as an option. The standard discharge is an all-welded heavy-duty flange drilled to match American Standard Class 125 bolt pattern.

Wheel
The Model HPB Blower is furnished with an aluminum alloy wheel, and is provided with a split-taper lock bushing for easy wheel removal from the shaft. Standard for wheel sizes 14” through 26” is riveted construction, while size 27” through 30” wheels are welded. Welded steel wheels are available in all sizes for heat applications (temperatures 300°F to 600°F).

For increased fan capacity, a wider wheel is offered for sizes 22” through 26”. These fans are identified as “W” (wide) and the ratings are listed on pages 19 and 20.

Drive Arrangements

Arrangement 1
Arrangement 1 has a shaft and bearing assembly designed for the motor to be mounted in one of the four AMCA standard motor positions, W, X, Y, or Z.

Standard Unit Arrangement 4
Wheel is mounted directly to motor shaft, providing maximum performance at minimum cost and maintenance. Available for the full range of wheel sizes from 14” through 30”. Maximum temperature is 180°F.

Heat Fans
Arrangement 1 and 8 fans are available with optional construction for operation at temperatures up to 600°F. High temperature modifications include a welded steel wheel, special base construction to accommodate a heat slinger and guard, and aluminum paint finish. Fans requiring “W” (wide) wheels are not available with 600°F construction.

Arrangement 8
Direct coupled unit with an extended pedestal to accommodate a motor and flexible coupling. Fan assembly can remain intact while removing motor for service. Available for the full range of wheel sizes from 14” through 30”. Maximum temperature with aluminum wheel is 300°F.

Arrangement 9
Built to Arrangement 1 specifications, but with an adjustable motor slide base and V-belt drive mounted on the fan pedestal. Motor located on right side as standard. Available throughout the range of sizes, and can be modified for operation at elevated temperatures. Pedestal dimensions limit selection to small motors only. Consult factory for availability of belt driven Arrangement 9 fans.
Accessories

Shaft Seal
Four types of friction shaft seals are available:

1. **Elastomeric Rotary Seal** — Rides against a heavy Teflon wear plate. Spare seal provided as standard. Cut off old seal and push spare into place. This seal is suitable for operation up to 300°F.

2. **Ceramic Felt** — Elements are encased between housing drive side and metal retaining plate. Ceramic felt inserts may be easily split for field installation and maintenance. The seal is best suited for 301°F to 600°F operation. These seals minimize leakage around the shaft opening but are not gas-tight.

3. **Lubricated Seals** — For longer seal life. Suitable to 300°F.

4. **Stuffing Boxes** — Constructed of three rows of permanently lubricated packing material encased between the housing drive side and the machined metal packing gland. This shaft seal provides the best seal against gas leakage but is not totally gas-tight. Suitable for temperatures to 500°F. Specify temperature for proper packing material.

Wheel Thrust Vanes
Provide a simple solution to applications which require negative pressure at the point of shaft penetration of the scroll in order to prevent the escape of undesirable fumes or gases.

Outlet Dampers
Control airflow on discharge side of blower. Dampers have manual lever control. Recommended where a pipe is not connected to the discharge side of the blower. Standard damper is suitable for temperatures to 400°F.

Inlet Filters
(Weatherhood Shown)
Permanent oil-wetted filters or throwaway cellulose filters are recommended where heavy dust conditions exist. An all-weather hood option is available. Pressure drop through clean filter, less hood, is 0.25” W.G. Specify flanged inlet for mounting. A combination filter/silencer is also available (see page 5).

Flexible Sleeve
Connects fan to standard piping and reduces noise and vibration transmission. Furnished with stainless steel hose clamps.

Tube Adaptor
Bolts to flanged inlet or discharge of fan. Provides connection to American Standard pipe sizes or a flexible sleeve (see above).
## Accessories

### Concentric Silencer

The silencer is engineered and designed to effectively reduce objectionable air intake noise.

<table>
<thead>
<tr>
<th>INSERTION</th>
<th>SILENCER SIZE</th>
<th>OCTAVE BAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOSS</td>
<td>1 2 3 4 5 6 7 8</td>
<td></td>
</tr>
<tr>
<td>dB</td>
<td>4 4 18 26 33 36 29 23</td>
<td></td>
</tr>
<tr>
<td>EACH</td>
<td>6 2 14 23 31 33 28 25</td>
<td></td>
</tr>
<tr>
<td>SILENCER</td>
<td>8 1 11 21 29 30 28 25</td>
<td></td>
</tr>
</tbody>
</table>

### Filter/Silencer

An efficient intake filter with a silencing chamber enables the filter/silencer to meet both requirements.
How To Select A Pressure Blower

To select a high pressure blower from the fan performance curves on pages 7 through 20, the system design CFM and SP are needed (at standard density of 0.075 lb./ft³).

For high pressure blowers, it is recommended to select a motor 1 to 2 sizes larger than the performance curves suggest, as described in the following example:

**Example 1:**
Given a performance of 400 CFM at 25" SP, select a size 19" High Pressure Blower with a 4" diameter outlet. The performance looks as follows (also shown on page 9 of this catalog):

The operating point of 400 CFM and 25" SP is noted above by the diamond shape.

Therefore, the performance point of 400 CFM at 25" SP requires a 5 HP motor.

**NOTE:** For a 5% or 1" reduction in design static pressure, the performance will require a 7 1/2 HP motor, as shown by the triangle shape. It is common in system design to put a 5 to 10% safety factor on the system static pressure. However, when utilizing this type of fan, it is important to consider its increasing brake horsepower characteristic.

The performance curve for the Size 19", 4" outlet duct High Pressure Blower shown below depicts the increasing brake horsepower characteristic more clearly. For a small reduction in static pressure, the brake horsepower increases.

---

**Suction Pressure Corrections For Inlet Suction Conditions**

A suction pressure correction is necessary for inlet static pressures (usually 10" or greater). The static pressure is negative on the inlet or suction side of the fan so a partial vacuum is created at the fan inlet. This partial vacuum lowers the density of the air (or gas) or makes the air (or gas) rarefied. Therefore, the air must be converted to standard conditions by using the “Suction Pressure Correction Factor,” as shown in the example below.

**Example 2:**
Given a fan inlet static pressure of 20" at 70°F at sea level, the suction pressure correction ratio is calculated using the following formula:

\[
\text{Ratio} = \frac{\text{Ambient Absolute Press.} - \text{Fan Inlet SP}}{\text{Ambient Absolute Press.}}
\]

For this example:

\[
\text{Ratio} = \frac{407 - 20}{407} = 0.9509
\]

Using this ratio, the static pressure at standard conditions is calculated as follows:

\[
\text{SP @ Std. Cond.} = \frac{20"}{0.9509} = 21.03" \text{ SP @ Std. Cond.}
\]

The static pressure of 21.03" is used for selecting the fan from the performance curves.
Performance Data

The Aerovent Model HPB Blowers shown on pages 7 through 20 of this bulletin have been tested and rated in accordance with industry accepted test codes, and are guaranteed by Aerovent to deliver rated performance.

Performances shown are based on 3500 RPM motor speeds and standard inlet air density of 0.075 lbs./ft³.

Range of performance is within motor horsepower specified.

Catalog Numbering System

W 26 - 12 - HPB - 3500 - 60

Wide Housing
Nominal Fan Size (In.)
Nominal Outlet Size (In.)
Fan Type
RPM
Motor Horsepower

Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream.

Aerovent Bulletin 912
Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream.
Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream.
Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream.
Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream.
Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream
Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream.
Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream.
Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream.
Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream.
Performance shown is for installation Type D: Ducted inlet, ducted outlet. Performance ratings do not include the effects of appurtenances in the airstream.
Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream.
Performance shown is for installation Type D: Ducted inlet, ducted outlet.
Performance ratings do not include the effects of appurtenances in the airstream.
Material Specifications for Standard Units

<table>
<thead>
<tr>
<th>SIZE</th>
<th>SIDE PLATES</th>
<th>HOUSING</th>
<th>MOTOR BASE</th>
<th>ALUMINUM WHEEL</th>
<th>STEEL WHEEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SCROLL</td>
<td>FRAME REINFORCEMENT</td>
<td>WEIGHT (LB)</td>
<td>WR² (LB-FT²)</td>
</tr>
<tr>
<td>14&quot;</td>
<td>0.1350&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>15&quot;</td>
<td>0.1350&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>16&quot;</td>
<td>0.1350&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>17&quot;</td>
<td>0.1350&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>18&quot;</td>
<td>0.1350&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>19&quot;</td>
<td>0.1350&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>21&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>22&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>23&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>24&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>25&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>26&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>27&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>28&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>29&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>30&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>W21&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>W22&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>W23&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>W24&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>W25&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
<tr>
<td>W26&quot;</td>
<td>0.1875&quot;</td>
<td>0.135&quot;</td>
<td>0.25&quot; x 2&quot;</td>
<td>0.250&quot;</td>
<td>0.25&quot; x 2&quot;</td>
</tr>
</tbody>
</table>

*To overcome inertia of steel wheel.

Performance shown is for installation Type D: Ducted inlet, ducted outlet. Performance ratings do not include the effects of appurtenances in the airstream.
### Dimensional Data – Arrangement 1

#### Diagram:
- **C**: Centerline of the flange
- **D**: Diameter of the hole
- **E**: Flange thickness
- **F**: Holes (4) Req’d.
- **G**: Hole diameter
- **H**: Flange width
- **I**: Flange height
- **J**: Flange length
- **K**: Flange thickness
- **L**: Flange height
- **M**: Flange length
- **N**: Flange thickness
- **R**: Flange height
- **S**: Flange length
- **T**: Flange thickness

#### Table:
<table>
<thead>
<tr>
<th>HSG. SIZE</th>
<th>WHL SIZE</th>
<th>SHFT DIA</th>
<th>A</th>
<th>OUT. FLNGE SIZE</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>18&quot;</td>
<td>14&quot; 15&quot; 16&quot; 17&quot; 18&quot;</td>
<td>1½ 18½&quot; 4&quot; 6&quot; 8&quot;</td>
<td>17¼</td>
<td>12½&quot; 10⅞&quot; 10⅞&quot; 13⅞&quot; 11⅞&quot;</td>
<td>23&quot; 7¾ 3½ 6¾ 6¾</td>
<td>17¼ 4¾ 12 8¾ 9¾</td>
<td></td>
</tr>
<tr>
<td>22&quot;</td>
<td>19&quot; 21&quot; 22&quot;</td>
<td>1½ 24½&quot; 4&quot; 6&quot; 8&quot;</td>
<td>17¾</td>
<td>16½ 14¾ 14¾ 17¾ 15¾</td>
<td>23¾ 6½ 4 6¾ 6¾</td>
<td>17¾ 4¾ 12 11 11¾</td>
<td></td>
</tr>
<tr>
<td>26&quot;</td>
<td>23&quot; 24&quot; 25&quot; 26&quot;</td>
<td>1½ 26½&quot; 6&quot; 8&quot;</td>
<td>19</td>
<td>18½&quot; 16½&quot; 16½&quot; 19½&quot; 17½&quot;</td>
<td>23½ 6½ 5 8 5¼</td>
<td>17 4½ 12 12½ 13¼</td>
<td></td>
</tr>
<tr>
<td>30&quot;</td>
<td>27&quot; 28&quot; 29&quot; 30&quot;</td>
<td>2½ 30 6&quot; 8&quot;</td>
<td>26½</td>
<td>22½ 19½&quot; 17½ 25½ 20½</td>
<td>29½&quot; 6½ 6 8 5¼</td>
<td>21½ 4½ 16 13½ 14¼</td>
<td></td>
</tr>
<tr>
<td>W26&quot;</td>
<td>W21&quot; W22&quot; W23&quot; W24&quot; W25&quot; W26&quot;</td>
<td>1½ 26½&quot; 12&quot; 27</td>
<td>18½&quot; 16½&quot; 16½&quot; 19½&quot; 17½&quot;</td>
<td>25½ 7½ 6 8 7½</td>
<td>17½ 4½ 12 12½ 13¼</td>
<td></td>
</tr>
</tbody>
</table>
NOTES:
Flanged discharge is standard. Optional inlet flanges are available in any combination shown on page 24. Inlet flanges smaller than inlet venturi will require an optional pipe inlet (performance will be affected). Inlet flange will match discharge flange where possible, if not otherwise specified. All flanges match American Standard Class 125 drilling.

All dimensions in inches. *CONSULT FACTORY FOR DOWNBLAST DISCHARGE DIMENSIONS.
**Dimensional Data – Arrangement 8**


| HSQ SIZE | WHL SIZE | SHFT DIA | A | OUT. FLNGE SIZE | B | C | D | E | F | G | J | L | M | R | T | U |
|----------|----------|----------|---|----------------|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 18"      | 14"      | 1½       | 18¾s | 4"              | 6" | 8" | 17½   | 12¹/₁₆ | 10³/₁₆ | 10³/₁₆ | 13³/₁₆ | 11⅞   | 6½ | 6¾ | 4¼ | 8¼ | 9¾ |
| 19"      | 15"      | 1½       | 24¾s | 4"              | 6" | 8" | 17⅞   | 16½   | 14¼   | 14½   | 17¾   | 15½   | 6⅝ | 6¾ | 4¾ | 11 | 11¾ |
| 20"      | 16"      | 1½       | 26¾s | 6"              | 8" | 8½ | 21½   | 19     | 18½   | 16⅞   | 16⅞   | 19¾   | 17½   | 6¾ | 5½ | 4¹/₁₆ | 12½ | 13½ |
| 21"      | 17"      | 2½       | 30    | 6"              | 8¾ | 8½ | 23⅞   | 22½   | 19½   | 17½   | 25½   | 20⅞   | 6½ | 5½ | 4¹/₁₆ | 13½ | 14½ |
| 22"      | 18"      | 2½       | 26⅞   | 10⅞   | 10½  | 28⅞   | 14½   | 16½   | 16⅞   | 19½   | 17½   | 6⅝ | 5½ | 4¹/₁₆ | 13½ | 14½ |
| W26      | W27      | W28      | W29  | W30            | W27 | W28  | W29  | W30 | 1⅛   | 26⅞   | 12²    | 27     | 18⅞   | 16⅞   | 16⅞   | 19⅞   | 17⅞   | 7⅞  | 8   | 7½ | 4¹/₁₆ | 12½ | 13½ |
Flange Dimensions

FLANGE DIMENSIONS

<table>
<thead>
<tr>
<th>INLET/DISCHARGE SIZE</th>
<th>I.D.</th>
<th>O.D.</th>
<th>BOLT CIRCLE NO.</th>
<th>HOLES SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4&quot;</td>
<td>4</td>
<td>9</td>
<td>7½</td>
<td>8</td>
</tr>
<tr>
<td>6&quot;</td>
<td>6</td>
<td>11</td>
<td>9½</td>
<td>8</td>
</tr>
<tr>
<td>8&quot;</td>
<td>8</td>
<td>13½</td>
<td>11½</td>
<td>8</td>
</tr>
<tr>
<td>10&quot;</td>
<td>10</td>
<td>16</td>
<td>14½</td>
<td>12</td>
</tr>
<tr>
<td>12&quot;</td>
<td>12</td>
<td>19</td>
<td>17</td>
<td>12</td>
</tr>
</tbody>
</table>

Standard Pipe Sizes Offered:
- 6⅛" O.D. on 18" and 22" housings
- 8⅛" O.D. on 26", 30" and W26" housings.

Other sizes available upon request.

Discharge Arrangements

<table>
<thead>
<tr>
<th>DISCHARGE POSITION</th>
<th>TOP HORIZONTAL</th>
<th>BOTTOM HORIZONTAL</th>
<th>UPBLAST</th>
<th>TOP 45 DOWN</th>
<th>BOTTOM 45 UP</th>
<th>TOP 45 UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation</td>
<td>CLOCKWISE</td>
<td>COUNTERCLOCKWISE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* SPECIAL CONSTRUCTION IS REQUIRED FOR CLOCKWISE AND COUNTERCLOCKWISE DOWNBLAST POSITIONS.
Fans shall be Model HPB High Pressure Centrifugal Blowers as manufactured by Aerovent, Minneapolis, Minnesota, and shall be of the size and capacity as indicated in the fan schedule. Model HPB High Pressure Blowers shall be tested and certified in accordance with ANSI/ASHRAE 51-1985 and ANSI/AMCA 210-85 test codes and guaranteed by the manufacturer to deliver the rated, published performance levels. In addition, each unit shall be factory test run prior to shipment.

CONSTRUCTION — The Model HPB High Pressure Blower shall have a continuously welded heavy-gauge steel housing and motor base for rugged, heavy duty service. All sizes shall have rotatable and reversible housing, inlet venturi with a guard, and all-welded heavy duty flanged discharge drilled to match American Standard Class #125 bolt pattern. A flanged or piped inlet is available as an option.

WHEEL — The Model HPB High Pressure Blower shall be furnished with an aluminum alloy wheel. Wheel sizes 14" through 26" shall be a riveted construction, while wheel sizes 27" to 30" shall be welded. The wheel shall be dynamically and statically balanced and shall be attached to the shaft with a split-taper lock bushing for easy removal from the shaft. Welded steel wheels are available for heat applications (temperatures 300°F to 600°F).

BEARINGS (Arr. 1, 8, and 9 only) — Bearings shall be of a regreaseable pillow block type, and shall have a minimum L-10 life as defined by AFBMA of at least 20,000 hours (100,000 hours average life).

DRIVES (Arr. 1, 8, and 9 only) — Belts and sheaves furnished by the manufacturer shall be designed with a 1.4 service factor unless otherwise specified. Sheaves shall be cast iron with static conducting belts. The adjustment of the belt tension is accomplished with an adjustable motor base.

MOTORS — Motors shall be foot-mounted NEMA Design B, standard industrial, continuous duty, ball bearing, variable torque type suitable for operation on voltage, phase, and hertz, as listed in the fan schedule. Motor bearings shall have a minimum L-10 life, as defined by AFBMA, of at least 40,000 hours (200,000 hours average life).

BALANCING — The wheel assembly shall be statically and dynamically balanced in accordance with ANSI/AMCA 204-96 “Balance Quality and Vibration Levels for Fans” to Fan Application Category BV-3, Balance Quality Grade G6.3. In addition, direct drive fan wheels shall be balanced on the motor shaft, belt driven fan wheels shall be balanced on the fan shaft after final assembly in the fan casing, in the manufacturing facility, to the following peak velocity values, filter-in, at the fan test speed:

<table>
<thead>
<tr>
<th>Fan Application Category</th>
<th>Rigidly Mounted (in./s)</th>
<th>Flexibly Mounted (in./s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV-3</td>
<td>0.15</td>
<td>0.20</td>
</tr>
</tbody>
</table>

FINISH — The unit, after fabrication, shall be cleaned and chemically pretreated by a phosphatizing process and shall be painted inside and outside with an air dry enamel. The fan shall be coated with the following optional finish:

- Plasite 4310 – Vinyl Ester
- Plasite 9500 – Baked Epoxy Phenolic
- Air Dried Epoxy
- Heresite P413 – Baked Phenolic
- Plasite 7122L – Epoxy Phenolic
- Powder Coat (replaces Farboil)
- Carbocote 30 (replaces Sanitile 550)
- Heresite VR504 – Phenolic
- Plasite 9500 – Baked Epoxy Phenolic
- Plasite 7122L – Epoxy Phenolic
- Powder Coat (replaces Farboil)
- Carbocote 30 (replaces Sanitile 550)
- Heresite VR504 – Phenolic

ACCESSORIES — The units shall be furnished complete with:

- Spark Resistant Construction (Type A or B)
- Shaft & Bearing Guard
- Belt Guard
- Coupling Guard
- Inlet Flange
- Tube Adapter (Inlet/Outlet)
- Flexible Adapter (Inlet/Outlet)
- Wheel Thrust Vanes
- Shaft Seal (Elastomeric Rotary, Ceramic Felt, Lubricated, or Stuffing Box)
- Bolted Access Door
- Blast Gate
- Continuous Double-Welded Scroll
- Inlet Filter
- Inlet Combination Filter/Silencer
- Inlet/Outlet Silencer
- Outlet Silencer
- High Temperature Welded Steel Wheel
- Unitary Base
- Vibration Isolators (Spring or R.I.S.)
- 1" Drain